Warning: include(/home/quintpub/public_html/journals/prd/includes/code.php) [function.include]: failed to open stream: No such file or directory in /home/quintpub/public_html/journals/prd/abstract.php on line 2

Warning: include() [function.include]: Failed opening '/home/quintpub/public_html/journals/prd/includes/code.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/lib/php') in /home/quintpub/public_html/journals/prd/abstract.php on line 2
Silica-Nylon Reinforcement Effect on the Fracture Load and Stress Distribution of a Resin-Bonded Partial Dental Prosthesis
Warning: include(/home/quintpub/public_html/journals/prdincludes/05_update/javascript.php) [function.include]: failed to open stream: No such file or directory in /home/quintpub/public_html/journals/prd/abstract.php on line 39

Warning: include() [function.include]: Failed opening '/home/quintpub/public_html/journals/prdincludes/05_update/javascript.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/lib/php') in /home/quintpub/public_html/journals/prd/abstract.php on line 39
Follow Us      

LOGIN

   Official Journal of The Academy of Osseointegration

 
Share Page:
Back

Volume 41 , Issue 2
March/April 2021

Pages e45–e54


Silica-Nylon Reinforcement Effect on the Fracture Load and Stress Distribution of a Resin-Bonded Partial Dental Prosthesis

Aline Silva Firmino, DDS, MSc/João Paulo Mendes Tribst, DDS, MSc, PhD/Leonardo Jiro Nomura Nakano, DDS, MSc/Amanda Maria de Oliveira Dal Piva, DDS, MSc, PhD/Alexandre Luiz Souto Borges, DDS, MSc, PhD/Tarcísio José Arruda Paes-Junior, DDS, MSc, PhD


PMID: 33079975
DOI: 10.11607/prd.4347

This study investigated the influence of silica-nylon reinforcement on the stress distribution and fracture load of a resin-bonded fixed partial dental prosthesis (RBFDP). Three-unit RBFDPs (N = 60) were inserted between the first premolar and the first molar of a maxillary model. The groups were divided according to the nylon reinforcement (n = 20/group): conventional fixed prosthesis (without reinforcement), prosthesis with silica-nylon reinforcement positioned vertically, and prosthesis with silica-nylon reinforcement positioned horizontally. Half of the specimens were tested after 24 hours in a universal testing machine until fracture (1,000 kgf; 1 mm/minute) to determine the single load to fracture. The other half was submitted to mechanical aging during 106 cycles (100 N, 2 Hz), totaling 6 groups (n = 10/group). The results were analyzed by two-way analysis of variance (ANOVA; α = 5%). The stress distribution for non-aged groups was simulated using finite element analysis. The numeric prostheses were modeled similarly to the in vitro assay. ANOVA showed no statistical difference between groups (P < .05) for load to fracture. However, the use of the reinforcement provided stability even after the failure, as the parts did not separate. The computational analysis showed similar biomechanical behavior among the groups. The use of the nylon reinforcement does not influence the fracture load or the stress distribution, but it does enable the prosthesis to remain in position after failure.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2020 Quintessence Publishing Co, Inc

PRD Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help